
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 141
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Modeling and Querying Data in MongoDB
Rupali Arora, Rinkle Rani Aggarwal

Abstract— With the uninterrupted growth of data volumes, the storage of information, support and maintenance have become the biggest
challenge. Relational database products fall behind to scaling the applications according to the incoming traffic. Due to huge data storage
and scaling demands, growing number of developers and users have begun turning to NoSQL databases. This paper describes data
modeling and query execution in MongoDB Document database. This paper shows how data is retrieved from MongoDB Document
database without using JOIN.
Index Terms— Column-oriented, Document-based, Graph database, Key-value, MongoDB, NoSQL, Relational database

—————————— ——————————

1 INTRODUCTION
ELATIONAL databases have been used for decades for
general data storage in web and business applications
with millions of reads but few writes requirements. With

the advent of web 2.0 applications with millions of users reads
and writes, a more scalable solution is required. The data
stores for these applications needs to provide good horizontal
scalability. Horizontal scalability means the ability to distrib-
ute both the data and simple read/write operations over many
servers. The relational databases have little capabilities to hor-
izontal scale over many servers. NoSQL databases were devel-
oped to deal with such large scale data needs. The term
“NoSQL” was first used by Carlo Strozzi [1] in 1998 for his
RDBMS, Stozzi NoSQL. Recently, the term NoSQL (Not Only
SQL) has been used for databases which don’t use SQL (Struc-
tured Query Language) as its query language and which don’t
require fixed table schema.

A key feature of NoSQL systems is “Share nothing” hori-
zontal scaling-replicating and partitioning data over many
servers [2]. Due to this feature, NoSQL systems can support a
large number of simple read/write operations per second.
NoSQL systems don’t provide ACID (Atomicity, Consistency,
Isolation, Durability) guarantees but follow BASE. BASE is
acronym for Basically Available, Soft state and Eventually con-
sistent.Basically available means that most data is available
most of the time [8]. Soft-state means data is not consistent all
the time but will be in eventually consistent state. MongoDb
[3] by 10gen, Neo4j by Neo Technologies, Cassandra [4] by
Facebook, HBase and Google’s Big Table [5] are examples of
NoSQL databases. NoSQL solutions are divided into four clas-
ses.
1.1 Key-Value databases
In key value data stores, data is stored in the form of keys and
values [6]. Each key is unique and keys are used to retrieve the
values. The query speed of these databases is higher than the
relational databases. Amazon’s Dynamo and Riak are famous
key value data stores. These are used in applications where

schema is continuously evolving.

1.2 Column-oriented databases
In column oriented data stores data is stored by columns and
columns of related data is stored in same file which are called
column families. These data stores are mostly used in read
intensive applications. Hbase and Cassandra are famous col-
umn oriented data stores.

1.3 Document databases
Document data stores are similar to key value data stores but
the value is stored in JSON or XML format. It is used for ap-
plications in which data is changed occasionally like Customer
Relationship Management System

1.4 Graph databases
Graph Database uses graph structure with nodes, edges and
properties of the edges to store the data. They are suited for
the applications in which there are more interconnections be-
tween the data like social networks. OrientDB and neo4j are
popular open source graph databases.

The objective of this paper is to show how schema is mod-
eled and data is queried in MongoDB. The paper is organized
as follows: In section 2 document\oriented databases are de-
scribed. Section 3 shows class diagram and JSON representa-
tion of MongoDB schema. In section 4 describes how queries
are executed in MongoDB.

2 DOCUMENT DATABASES
Document database stores data in the form of documents ra-
ther than as normalized relational table in relational databases.
Data format of these documents can be JSON, BSON or XML
[7]. Documents are stored into collections. The relational
equivalent of document and collection are record (tuple) and
relation (table).But like relation collection does not enforce
fixed schema. It can store documents with completely differ-
ent set of attributes. Documents can be mapped directly to the
class structure of programming language but it is difficult to
map RDBMS entity relationship data model. This makes easier
to do programming with document databases. There is no
need of JOINS in document databases as in RDBMS due to

R

————————————————
• Rupali Arora is currently pursuing masters degree program in computer

science and engineering inThapar University, Patiala, India, PH-
9463166166. E-mail: arora.mona2@mail.com

• Rinkle Rani Aggarwal is Assistant Professor in computer science and en-
gineering inThapar University, Patiala, India, PH-9915554748. E-mail:
raggarwal@thapar.edu

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 142
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

embedded document and arrays. That is why today a growing
number of developers are moving to document databases.
CouchDB by Apache Software Foundation and MongoDB by
10gen are open source databases built for scalability and ease
of use.

MongoDB is an open source NoSQL document database,
initiated by 10gen Company. It was designed to handle grow-
ing data storage needs. It is written in c++ and its query lan-
guage is JavaScript. MongoDB stores data in the form of col-
lections. Each collection contains documents. MongoDB doc-
uments are stored in binary form of JSON called BSON for-
mat. BSON supports Boolean, float, string, integer, date and
binary types. Due to document structure, MongoDB is schema
less. It is easy to add new fields to a document or to change
the existing structure of a model. MongoDB offers a technique
named Sharding to distribute collections over multiple nodes.
When nodes contains different amount of data, MongoDB au-
tomatically redistribute the data so that load is equally dis-
tributed across the nodes. MongoDB also support Master-
slave replication. The slave nodes are copies of Master nodes
and used for reads or backups.

2 DATA MODELING IN MONGODB
The example database which has been used for querying
MongoDB contains three collections- User, Tag and Post. Post
contains an embedded document named comments. A user
can have any number of posts. A post contains tags. User can
comment under any post. Class diagram and JSON format is
used for modeling schema of the database.

2.1 Class Diagram

MongoDB does not use JOINS to relate documents like Rela-
tional database [3]. In MongoDB data is stored in the denor-
malized form in which related data in stored in single docu-
ment. This is known as Embedding. In the fig 1 Post and
Comment are embedded documents. But sometimes we need
to store the data in different documents like in fig 1. Post, User
and Tag are different documents. So, to relate these documents
_id field of one document is saved in another document as
reference. E.g. in fig 1 uid is used as reference field of User
document in Post document to indicate a relationship between
documents.

2.2 JSON Format Representation

In MongoDB data is stored in the form of BSON documents.
BSON is binary representation of JSON. In MongoDB documents
data is represented in the form of field and value pairs. A field-
value pair is comprised of a “field name” in double quotes,
followed by colon “:” and then “value” in double quotes. The
values can be another documents, arrays and array of documents.
Each pair is separated by comma. Documents are held within
curly (“{ }”) brackets and arrays are held within square (“[]”)
brackets. Example database that have been used for querying
MongoDB has the document structure shown below. Post, User
and Tag are collections. “_id” field is unique- id field and may
contain value of any BSON data type other than array. In post
collection tagid is array of strings and comments contain array of
sub documents.

“Post”:
{
 “_id”:”<string val>”,
 “uid”:”<integer val>”,
 “title”:”<string val>”,
 “body”:”<string val>”,
 “primary url”:”<string val>”,
 “time”:”<datetime val>”,
 ”tagid”:["<string val>”],
 “comments”:[
 {
 “cid”:”<string val>”,
 “parented”:”<string val>”,
 “userid”:”<integer val>”,
 “title”:”<string val>”,
 “comment”:”<string val>”,
 “time”:”<datetime val>”,
 “score”:”<number val>”,
 “descriptor”:”<string val>”
 }
]
}
 “User”:
 {
 “_id” :”< integer val>”,
 “username”: “<string val>”,
 “realname”: “<string val>”,
 “email”:”<string val>”,
 “homeurl”:”<string val>”,
 “pswd”:”<string val>”,

Fig. 1. Class diagram representation of case study

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 143
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 ”pid”:[“<string val>”],
 “cid”: [“<string val>”]
 }

 “Tag”:
 {
 “_id”: “<string val>”,
 “name”:”<string val>”,
 ”pid”:[“<string val>”]
 }

7 QUERYING MONGODB
As data modeling is important, it is also important to know
how queries are executed in MongoDB. This section describes
how queries are written in MongoDB. Seven Queries are de-
signed to describe syntax in MongoDB and to show how same
queries are written in MySQL.
Query1: Find the tag names which have been used in
 the post under which a particular user has
 commented. (user=’a1’)
Query2: Find the tag(s) which have been used in the
 posts of each user.
Query3: Given a cid of a comment find its related
 post, parent comment and tags associated
 with the post.
Query4: Find the time of the post under which some
 user has commented. (user=’a1’)
Query5: List the Posts of each user.
Query6: Find the total number of posts by a
 particular user. (uid =102)
Query7: Find out the username, uid, tags associated
 with posts of a comment and score
 associated with comments.

Query1.

MySQL mysql> select t.name from comment c,post
p,user u,tag t where p.pid=c.postid an
d c.userid=u.uid and p.pid=t.pid and
u.username='a1';
output:
+--------+
| name |
+--------+
| space |
| apple |
| google |
| apple |
+--------+

MongoDB
> var u=db.user.findOne({username:"a1"})
>var
tag1=db.post.find({"comments.userid":u._id})
> db.tag.find({_id:tag1.tagid},{_id:0,name:1})

Output:
{ "name" : "space" }
{ "name" : "google" }
 "name" : "apple" }

The find () method selects documents from a collection that
meets the <query> argument. <Projection> argument can also
be passed to select the fields to be included in result set. The
find () method returns a cursor to the results. This cursor can
be assigned to variable.
 db.collection.find(<query>,<projection>)
The findOne() method is similar to find() method but it selects
only one document from a collection.
In this query first the document with username ‘a1’ is extract-
ed from User collection and stored in variable u. Then the
comments corresponding to that user are found by matching
u. id field with userid field of subdocument comments (com-
ments.userid) in Post Collection and returned cursor is stored
in the variable tag1. Then _id is matched in Tag collection. To
exclude _id field {_id:0} is written in projection field and the
fields which needs to be included like here name is to be in-
cluded is written as {name: 1} in projection argument.

Query2.

MySQL mysql>select u.uid,t.tagid from user u,post
p,tag t where u.uid=p.uid and p.pid
=t.pid;

MongoDB db.post.find({},{_id:0,uid:1,tagid:1})

Query3.

MySQL mysql> select c.cid, c.postid, c.parentid, t.tagid
from comment c,post p ,tag t where
c.postid=p.pid and p.pid=t.pid and c.cid='c2';

MongoDB db.post.find({"comments.cid":"c2"},{"comments.
cid":1,

"comments.parentid":1,tagid:1});

Query4.

MySQL mysql> select p.time from comment c,post
p,user u where p.pid=c.postid and c.
erid=u.uid and u.username='a1';

MongoDB > var u=db.user.findOne({username:"a1"})
> db.post.find({uid:u._id},{time:1,_id:0})

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 144
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Query5.

MySQL mysql> select u.uid,p.pid from user u,post p
where u.uid=p.uid;

MongoDB db.post.find({},{_id:1,uid:1})

Query6.

MySQL mysql> select count(p.pid) from post p,user u
where u.uid=p.uid and u.uid=102;

MongoDB > db.post.count({uid:102})

Query7.

MySQL mysql> select c.cid, u.username,c.userid,c.score,
 t.tagid from comment c,user u,tag t where
c.userid=u.uid and c.postid=t.pid;

MongoDB >
db.post.find({},{tagid:1,_id:0,"comments.score":1,
"comments.userid":1,"comments.cid”:1})

4 CONCLUSION

In this paper data modeling in MongoDB has been shown by
using Class diagram and JSON format. It also has been shown
that how queries are written in MongoDB. MongoDB does not
use JOINs to relate documents like Relational Databases. In
this all the data is stored in Single document or if needs to
store in different documents then documents are related by
using reference fields.

REFERENCES
[1] Strozzi, Carlo: NoSQL-A relational database management sys-

tem.2007-2010-http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql
/Home%2520 page

[2] R. Cattell. Scalable sql and nosql data stores. SIGMOD Rec., 39(4):12–
27, May 2011.

[3] MongoDB. Available. http://www.mongodb.org/
[4] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegel-

berg, H. Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash, R.
Schmidt, and A. Aiyer. Apache hadoop goes realtime at facebook. In
Proceedings of the 2011 ACM SIGMOD International Confer-
ence on Management of data, SIGMOD ’11, pages 1071–1080, New
York, NY, USA, 2011. ACM.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: a distrib-
uted storage system for structured data. In Proceedings of the 7th
symposium on Operating systems design and implementation, OSDI

’06, pages 205–218, Berkeley, CA, USA, 2006. USENIX Association.
[6] InfiniteGraph: The Distributed Graph Database, Objectivity, Inc.,

Sunnyvale, CA,2012
[7] Johannes Zollmann. (2012, Aug 20). NoSQL Databases

 [Online].Available:http://sewiki.iai.uni-
bonn.de/_media/teaching/labs/xp/ 2012b/seminar/10-nosql.pdf

[8] Olli Sutinen,” NoSQL – Factors Supporting the Adoption of Non-
Relational Databases” M.Sc thesis, Dept. Comput. Sci.,tampere
Univ., Finland, 2010

IJSER

http://www.ijser.org/
http://www.mongodb.org/

	1 Introduction
	1.1 Key-Value databases
	1.2 Column-oriented databases
	1.3 Document databases
	1.4 Graph databases

	2 Document Databases
	2 Data Modeling In MongoDB
	2.1 Class Diagram
	2.2 JSON Format Representation
	In MongoDB data is stored in the form of BSON documents. BSON is binary representation of JSON. In MongoDB documents data is represented in the form of field and value pairs. A field-value pair is comprised of a “field name” in double quotes, followed...

	7 Querying MongoDB
	4 Conclusion
	References

